Chem. Ber. 106, 1555-1564 (1973)

Pentacarbonyl(organometallselenid)chrom-, -molybdän- und -wolfram-Komplexe¹⁾

Herbert Schumann*, Reza Mohtachemi, Heinz-Jürgen Kroth und Ulrich Frank

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, D-1000 Berlin 12, Straße des 17. Juni 135

Eingegangen am 25. Januar 1973

Hexacarbonylchrom, -molybdän und -wolfram reagieren mit Bis(trimethylgermyl)selenid, Bis(trimethylstannyl)sclenid und Bis(trimethylplumbyl)selenid unter Abspaltung eines CO-Liganden und Bildung entsprechender Pentacarbonyl(organometallselenid)chrom(0)-, -molybdän(0)- bzw. -wolfram(0)-Komplexe (7–15). Die Infrarot-, Raman- und ¹H-NMR-Spektren werden diskutiert.

Pentacarbonyl(organometal selenide)chromium, -molybdenum, and -tungsten Complexes 1)

The reaction of hexacarbonylchromium, -molybdenum, or -tungsten with bis(trimethylgermyl)selenide, bis(trimethylstannyl)selenide, or bis(trimethylplumbyl)selenide results in the elimination of one CO ligand under formation of the corresponding pentacarbonyl(organometal selenide)chromium(0), -molybdenum(0), or -tungsten(0) complexes (7-15). The i.r., Raman, and ¹H n.m.r. spectra are discussed.

Kürzlich berichteten wir über die erstmalige Synthese von Pentacarbonylchrom(0)-, -molbdän(0)- und wolfram(0)-Komplexen mit Bis(trimethylelement-IVb)sulfiden als sechstem Liganden²⁾. Das Schwefelatom dieser Organometallsulfide ist somit basisch genug, um gegenüber den als Lewis-Säuren anzuschenden Übergangsmetallcarbonylen als σ -Donor und π -Acceptor auftreten zu können. Die Ausdehnung der Untersuchungen auf Organometallselenide hat nun ergeben, daß auch Bis(trimethylgermyl)selenid (1)³⁾, Bis(trimethylstannyl)selenid (2)³⁾ und das erstmals dargestellte Bis(trimethylplumbyl)selenid (3) mit Hexacarbonylchrom, -molybdän oder -wolfram unter Verdrängung einer CO-Gruppe reagieren.

 $[(CH_3)_3M']_2Se \xrightarrow{1} M' Ge Sn Pb$ $2 (CH_3)_3PbCl + Na_2Se \longrightarrow [(CH_3)_3Pb]_2Se + 2 NaCl$ 3

¹⁾ Vorläufige Mitteil.: *H. Schumann* und *R. Weis*, Angew. Chem. **82**, 256 (1970); Angew. Chem., Int. Ed. Engl. **9**, 246 (1970).

²⁾ H. Schumann, O. Stelzer, R. Weis, R. Mohtachemi und R. Fischer, Chem. Ber. 106, 48 (1973).

³⁾ I. Ruidisch und M. Schmidt, J. Organomet. Chem. 1, 160 (1963).

Bis(trimethylplumbyl)selenid (3)

Trimethylbleichlorid reagiert mit einer Aufschlämmung von wasserfreiem Natriumselenid in absolutem Benzol bei mehrstündigem Erhitzen unter Bildung von 3 in einer Ausbeute von 65 %.

Die aus Pentan bei -30° C in Form farbloser Kristalle ausfallende Verbindung schmilzt kurz oberhalb 0°C und zerfällt an der Luft augenblicklich unter Schwarzfärbung.

Darstellung und Eigenschaften der Komplexe

Als indirekte Ausgangssubstanzen für die Darstellung der Pentacarbonyl(organometallselenid)chrom-, -molybdän und -wolfram-Komplexe dienten Pentacarbonyl-(tetrahydrofuran)chrom (4), -molybdän (5) bzw. -wolfram (6)⁴⁾, die durch UV-Bestrahlung von Lösungen von Hexacarbonylchrom, -molybdän oder -wolfram in Tetrahydrofuran bei Raumtemperatur unter Argonatmosphäre erhalten werden. Kühlt man nach Beendigung der CO-Entwicklung auf 0°C ab und tropft anschließend unter Rühren äquivalente Mengen 1 bzw. 2 bzw. 3 zu, so bilden sich die Komplexe 7–15:

$$(CO)_{6}M + C_{4}H_{8}O \xrightarrow{h_{\gamma}} (CO)_{5}M - OC_{4}H_{8} + CO$$
$$- \frac{4 5 6}{M Cr Mo W}$$

$$4-6 + [(CH_3)_3M']_2Se \longrightarrow (CO)_5M-Se[M'(CH_3)_3]_2 + C_4H_8O$$

1-3	M	Ge	Sn	Pb	
	Cr	7	10	13	
	Mo	8	11	14	
	W	9	12	15	
		1			

7-15 sind gelbe kristalline Festkörper. Während 7-12 lichtunempfindlich sind und erst zwischen 90 und 110°C zerfallen, ist die Haltbarkeit von 13-15 durch merkliche Lichtsensitivität und thermische Instabilität vermindert. So zerfallen letztere am Tageslicht bei Raumtemperatur innerhalb weniger Stunden, im Dunkeln bei -20°C nach einigen Wochen unter Komproportionierung und Abscheidung von Hexacarbonylmetall. Von Sauerstoff und Wasser werden alle neun Komplexe gleichermaßen rasch angegriffen.

In direkter photochemischer Reaktion, d. h. durch UV-Bestrahlung von Tetrahydrofuranlösungen von 2 und Hexacarbonylchrom, -molybdän oder -wolfram bei Raumtemperatur und unter Argonatmosphäre sind die Verbindungen 10, 11 und 12 ebenfalls darzustellen¹⁾, allerdings in wesentlich geringerer Ausbeute. Dieser Weg sollte unseren bisherigen Erfahrungen nach²⁾ auch zur Synthese von 7–9, keinesfalls dagegen zur Darstellung der lichtempfindlichen Komplexe 13–15 geeignet sein.

⁴⁾ W. Strohmeier und F. J. Müller, Chem. Ber. 102, 3608 (1969).

Infrarot- und Raman-Spektren

Bis(triorganometall)selenide

Das bisher veröffentlichte Spektrenmaterial über Bis(trimethylelement-IVb)selenide umfaßt Angaben über die Infrarot-Banden von 1 im Bereich von 4000 --- 650 cm^{-1 3)} sowie von 2 im Bereich zwischen 4000 und 500 cm⁻¹ und dessen vollständiges Raman-Spektrum⁵⁾. Daneben liegen Mitteilungen über die Lage der Infrarot-Banden von Phenylgermyl-, -stannyl- und -plumbylselenid vor, ohne daß jedoch eine Bandenzuordnung für die Metall-Selen-Bindungen getroffen werden konnte⁶⁾.

	1		2		3	
Zuordnung	IR	REc)	IR	REc)	IR	REd)
v _{as} CH ₃	2964 st	2978 (4)	2985 st	2986 (3)	3005 st	2963 (1)
vsCH3	2895 st	2908 (10)	2915 st	2915 (10)	2923 st	2921 (4)
2×δ _{as} CH ₃	2795 m	2797 (1)			2765 s	
$2 \times \delta_s CH_3$	2450 s		2350 s		2275 s	
$2 \times \rho_s CH_3$			1463 s		1595 s	
δ _{as} CH3	1404 st	1411 (0)	1385 s	1406 (1)	1390 m	
$\rho_8(CH_3)_3M' + \nu_8M'C_3$	1260 Sch		1260 s		1260 s	
δ _s CH3	1235 st	1248 (2)	1186 m	1199 (5)	1158 st	1162 (2)
δsCH3					1148 s	1147 (2)
ρ _{as} CH ₃	815 st	835 (1)	770 st	770 (0)	757 st	
ρ _s CH ₃	755 st		719 st		730 Sch	
vasM'C3	595 st	606 (3)	530 st	533 (6)	473 st	475 (3)
vsM'C3	562 m	574 (9)	507 st	513 (10)	455 m	459 (7)
v _{as} M ₂ Se	285 st		240 st	238 (2)	208 st	209 (2)
ν _s M ₂ Se	270 st	270 (6)	225 st	228 (10)	193 st	194 (4)
δM'C3	210 Sch	209 (2)	159 s	155 (5)	147 Sch	149 (3)
δM'C ₃	184 st	186 (3)	152 st	148 (6)	137 m	136 (4)
δM'C ₃	165 s	155 (3)	141 st	142 (6)	120 st	124 (5)
δΜ′C3	146 s	141 (2)	122 Sch	125 (5)	115 st	119 (5)
δM2Se	80 s	82 (1)	67 s	70 (2)	61 s	54 (3)

Tab. 1. IR-Absorptionen^{a)} und Raman-Emmissionen^{b)} von 1-3 (st = stark, m = mittel, s = schwach, Sch = Schulter; Werte in Klammern = geschätzte Intensitäten)

a) Perkin-Elmer Infrarot-Spektrophotometer 457 und Polytec FIR 30 Fourier-Spektrometer, 0,1 mm Schichtdicke in Substanz. — ^{b)} Raman-Spektrophotometer Cary 82, in Substanz. — ^{c)} Argon-Laser, Coherent Radiation, 514.5 nm. — ^{d)} Krypton-Laser, Spectra-Physics, 647.1 nm.

Eine vollständige Zuordnung der Schwingungsbanden ist dagegen von einigen ringförmigen Organostannylseleniden bekannt⁷). Die von uns bei der vollständigen infrarot- und ramanspektroskopischen Vermessung von 1–3 gefundenen Frequenzwerte sind in Tab. 1 zugeordnet. Betrachtet man bei der Zuordnung der Metall-Selen-Banden die Trimethylmetallgruppen vereinfachend als eine schwingende Einheit und geht von der berechtigten Annahme aus, daß der Winkel M'- Se-M' kleiner ist als 180°C, so kann man die Verbindungen 1–3 zur Symmetrieklasse C_{2v} zugehörig rechnen. Außer den Schwingungen der Trimethylmetallgruppen sind nach diesem

⁵⁾ H. Kriegsmann, H. Hoffmann und H. Geissler, Z. Anorg. Allg. Chcm. 341, 24 (1965).

⁶⁾ H. Schumann und M. Schmidt, J. Organomet. Chem. 3, 485 (1965).

⁷⁾ H. Kriegsmann, H. Hoffmann und H. Geissler, Z. Anorg. Allg. Chem. 359, 58 (1968).

Modell somit nur noch 3 Schwingungen zu erwarten, nämlich eine antisymmetrische Valenzschwingung (B_1), eine symmetrische Valenzschwingung (A_1) und eine symmetrische Deformationsschwingung (A_1) . Die, wie bereits erwähnt, von anderer Seite für 2 gefundenen Bandenlagen und getroffenen Zuordnungen⁵⁾ konnten wir voll bestätigen. Die Zuordnung der im Bereich von 4000-500 cm-1 auftretenden Schwingungen der Trimethylgermyl- bzw. Trimethylplumbylgruppen von 1 und 3 erfolgte an Hand der Ergebnisse früherer Arbeiten 3.8,9), die der langwelligen M'C3-Deformationsfrequenzen im Vergleich mit den Spektren von 2 sowie von Trimethylgermyl- und Trimethylplumbylsulfiden¹⁰, -telluriden¹¹, -phosphinen¹², -arsinen¹³, -stibinen¹³ und -bismutinen¹³⁾ sowie Bis(trimethylsilyl)chalkogeniden¹⁴⁾. Eine genaue Zuordnung dieser Deformationsbanden erscheint uns ohne kontrollierende Kraftkonstantenberechnungen als zu gewagt.

Komplexe

Die in dieser Arbeit untersuchten Bis(trimethylelement-IVb)selenid-pentacarbonylmetallkomplexe unterscheiden sich von den kürzlich beschriebenen Bis(trimethylelement-IVb)sulfid-pentacarbonylmetallkomplexen²⁾ lediglich durch Ersatz des basischen Zentrums Schwefel durch Selen. Bezüglich Symmetrie und Zuordnung der Infrarot- und Raman-Banden gilt demgemäß das gleiche wie bei den beschriebenen Schwefelderivaten. Die in Tab. 2 aufgeführten Frequenzwerte der CO-Valenzschwin-

Verbindung		IR vCO(A ₁ ⁽²⁾) RE	\mathbf{B}_1		E ^{e)}		A ₁ ⁽¹⁾
$(CO)_5CrSe[Ge(CH_3)_3]_2$	7	2065 m ¢1 2063 (6)	1978 s 1979 (10)	1940 st 1945 (1)	1934 st 1933 (2)	1921 m 1925 (1)	1896 Sch 1897 (10)
$(CO)_5 MoSe[Ge(CH_3)_3]_2$	8	2074 s c) 2073 (4)	1974 s 1985 (9)	1947 st 1952 (1)	1941 st 1945 (1)	1922 m 1932 (1)	1905 Sch 1896 (5)
$(CO)_5WSe[Ge(CH_3)_3]_2$	9	2072 s c) 2070 (10)	1976 s 1975 (10)	1937 st 1947(3)	1932 st 1928 (4)	1919 m 1917 (1)	1895 Sch 1891 (10)
$(CO)_5 CrSe[Sn(CH_3)_3]_2$	10	2064 s ^{c)} 2067 (10)	1979 s 1972 (10)	1939 st 1945 (4)	1932 st 1925 (5)	1920 st 1918 (1)	1896 Sch 1885 (10)
$(CO)_5MoSe[Sn(CH_3)_3]_2$	11	2072 s c) 2069 (6)	1984 Sch 1983 (10)	1944 st 1948 (1)	1938 st 1930 (0)	1919 m 1922 (2)	1895 Sch 1890 (6)
$(CO)_5WSe[Sn(CH_3)_3]_2$	12	2068 s c) 2067 (8)	1973 s 1974 (10)	1935 st 1940 (1)	1928 st 1924 (1)	1917 m 1918 (3)	1892 Sch 1883 (8)
$(CO)_5 CrSe[Pb(CH_3)_3]_2$	13	2057 m d) 2053 (4)	1973 m 1964 (10)	1933 st 1934 (1)	1925 st 1921 (1)	1914 st 1905 (0)	1892 Sch 1888 (9)
$(CO)_5 MoSe[Pb(CH_3)_3]_2$	14	2065 s c) 2065 (4)	1979 s 1979 (8)	1939 st 1949 (0)	1932 st 1925 (1)	1916 m 1908 (1)	1892 Sch 1882 (7)
$(CO)_5WSe[Pb(CH_3)_3]_2$	15	2065 m c) 2064 (4)	1971 s 1981 (4)	1931 st 1935 (1)	1922 st 1915 (0)	1911 m 1902 (1)	1887 Sch 1890 (5)

Tab. 2. IR-Absorptionen^{a)} und Raman-Emmissionen^{b)} der Komplexe 7-15 im CO-Valenzschwingungsbereich (st = stark, m = mittel, Sch – Schulter, s = schwach; Werte in Klammern = geschätzte Intensitäten)

a) Perkin-Elmer Infrarot-Spektrophotometer 457, verd. Lösungen in Pentan.

b) Raman-Spektrophotometer Cary 82, in Substanz.
 c) Argon-Laser, Coherent Radiation, 514.5 nm.

d) Krypton-Laser, Spectra-Physics, 647.1 nm. e) Siehe unter l. c. 2).

⁹⁾ E. Amberger und R. Hönigschmidt-Grossich, Chem. Ber. 98, 3795 (1965).

10) R. Mohtachemi, Dissertation, Techn. Univ. Berlin 1973.

- 11) H. Schumann und R. Mohtachemi, in Vorbereitung.
- ¹²⁾ H. Schumann, P. Schwabe und O. Stelzer, Chem. Ber. 102, 2900 (1969).
- 13) H. Blaß, Dissertation, Univ. Würzburg 1969.

¹⁴⁾ H. Brüger, U. Goetze und W. Sawodny, Spectrochim. Acta 24A, 2003 (1968).

⁸⁾ H. Schumann, I. Schumann-Ruidisch und S. Ronecker, Z. Naturforsch. 25B, 565 (1970).

gungen entsprechen demgemäß in ihrer Lage und Intensität nahezu völlig den Banden der homologen Organometallsulfid-Komplexe. Diese praktisch vernachlässigbaren Unterschiede, die keine Rückschlüsse auf unterschiedliche Basizitätseigenschaften der metallorganischen Liganden erlauben, sind bei analogen Organometallphosphin-Komplexen bereits beobachtet worden¹⁵⁾.

Tab. 3a. IR-Absorptionen im Bereich $1300-50 \text{ cm}^{-1a}$ und Raman-Emmissionen im Berei	ich
$1300-30 \text{ cm}^{-1}$ b) der Komplexc 7-9 (st = stark, m - mittel, s = schwach, Sch = Schulte	er;
Werte in Klammern – geschätzte Intensitäten)	

Zuordnung	7 IR	RE	8 IR	RE	9 IR	RĔ
δ _s CH ₃	1250 s	1250 (2)	1246 Sch	1259 (1)	1250 s	1255 (2)
δ _s CH ₃	1241 s	1220 (1)	1234 s	1248 (1)	1237 s	1245 (1)
pasGeCH ₃	818 st		814 st		819 st	
ρ _s GeCH ₃	765 s		710 Sch		760 Sch	
δM(CO) ₅	666 st	678 (4)	663 s			
δM(CO)5	653 st		650 m			
vasGeC3	609 st	616 (5)	605 st	617 (4)	610 st	617 (6)
δM(CO) ₅					598 st	598 10)
δM(CO) ₅					583 st	
v _s GeC ₃	566 m	576 (10)	546 m	576 (6)	567 m	575 (10)
δM(CO)5	553 s		534 st		548 s	
vMC ₅		493 (6)	470 m	469 (4)	473 s	482 (6)
vMC ₅	448 st	462 (1)	448 s	438 (2)	433 s	437 (10)
vMC ₅	413 s	410 (2)	390 s	398 (4)	409 s	414 (2)
vMC ₅		398 (10)	370 st		379 st	382 (1)
v _{as} Ge ₂ Se	297 s	298 (1)	283 s	286 (1)	298 s	
v _s Ge ₂ Se	262 st	263 (2)	263 st	265 (3)	262 s	262 (5)
	239 m				240 m	
δGeC ₃	210 m	209 (2)		212 (2)	213 m	216 (1)
und	196 st	198 (2)		202 (3)	202 m	199 (4)
δMC ₅	183 m	182 (2)	186 m	174 (2)	177 st	180 (3)
}	168 s	156 (5)	160 Sch	152 (3)	160 st	166 (7)
į	133 st	132 (2)		143 (3)	134 st	142 (3)
	124 Sch	120 (7)	129 m		110 s	112 (10)
	109 st	104 (10)	98 m	101 (10)	100 s	98 (9)
δGe ₂ Se	80 st	88 (6)	82 m	82 (3)	75 s	77 (9)

a) Perkin-Elmer-Infrarot-Spektrophotometer 457 und Polytec Fourierspektrometer FIR 30 in Nujol zwischen CsBr bzw. Polyäthylenküvetten (0.1 mm Schichtdicke). b) Raman-Spektrophotometer Cary 82, Krypton-Laser, Spectra-Physics, 647.1 nm, in Substanz.

Während die CO-Valenzschwingungsbanden aus Vergleichsgründen in verdünnter Pentanlösung aufgenommen wurden, eignen sich Nujolsuspensionen der Komplexe 7-15 weitaus besser zur Registrierung aller restlichen Banden im IR-Spektrum. Die Raman-Spektren konnten dagegen in Substanz vermessen werden. In Tab. 3 sind im Bereich zwischen 1300 und 50 cm⁻¹ die vollständigen Schwingungsspektren der unter-

15) H. Schumann, O. Stelzer, J. Kuhlmey und U. Niederreuther, Chem. Ber. 104, 993 (1971).

	10		11		12	
Zuordnung	ĨŔ	RE	IR	RE	IR	RE
δ _s CH ₃	1202 s	1205 (4)	1195 s	1199 (2)	1198 s	1206 (2)
δ _s CH ₃	1188 s	1198 (3)	1184 s	1191 (2)	1190 s	1200 (2)
pasSnCH3	767 st		770 st		768 st	
psSnCH3	725 Sch		720 Sch			
δM(CO) ₅	667 st		664 s			
δM(CO) ₅	651 st		650 s			
δM(CO)5			604 m		598 st	
δM(CO)5	552 s		534 st		583 st	
v _{as} SnC ₃	535 st	541 (8)	532 st	535 (3)	537 st	544 (4)
$v_s SnC_3$	508 m	517 (10)	508 m	510 (6)	510 m	517 (6)
vMC ₅		480 (5)	470 Sch	472 (2)	475 Sch	480 (3)
vMC ₅	449 st	451 (0)	448 s	465 (2)	423 s	437 (5)
vMC5	413 s	412 (1)	390 s	392 (1)	409 s	412 (1)
vMC ₅			368 st		375 st	
v _{as} Sn ₂ Se	230 st	232 (1)	229 st	232 (1)	228 st	230 (1)
v _s Sn ₂ Se	210 st	221 (6)	219 st	217 (2)	220 st	224 (2)
δSnC ₃]					186 m	
	161 m	166 (7)	156 m	158 (4)	160 Sch	164 (3)
und	150 m	144 (4)	149 m	152 (2)	150 m	151 (2)
ļ		125 (7)	134 m	141 (3)	146 Sch	141 (2)
δMC ₅				121 (3)		120 (3)
	107 m	106 (10)	97 s	104 (7)		110 (9)
J					92 m	93 (5)
δSn_2Se	57 s	65 (6)	64 s	66 (3)	61 s	66 (4)

Tab. 3b. IR-Absorptionen im Bereich 1300-50 cm^{-1a)} und Raman-Emmissionen im Bereich 1300-30 cm^{-1b)} der Komplexc 10-12 (st = stark, m = mittel, s = schwach, Sch = Schulter Werte in Klammern = geschätzte Intensitäten)

^{a)} Perkin-Elmer-Infrarot-Spektrophotometer 457 und Polytec Fourierspektrometer FIR 30 in Nujol zwischen CsBr bzw. Polyäthylenküvetten (0.1 mm Schichtdicke).

b) Raman-Spektrophotometer Cary 82, Krypton-Laser, Spectra-Physics, 647.1 nm, in Substanz.

suchten Komplexe angegeben. Auch hier zeigt es sich, daß die Frequenzwerte $v_{as}M'_2Se(B_1)$, $v_sM'_2Se(A_1)$ und $\delta M'_2Se(A_1)$ der Germanium-, Zinn- und Blei-Selen-Bindungen beim Übergang zum Komplex $v_{as}M'_2SeM(A'')$, $v_sM'_2SeM(A')$ und $\delta M'_2SeM(A'')$ keine nennenswerten Verschiebungen erleiden. Die Zuordnung dieser Banden und der Valenzschwingungen $vM'C_3$ und vMC_5 sowie der Deformationsschwingungen $\delta M(CO)_5$ ist problemlos, da sie in klar abgegrenzten Bereichen liegen und nahezu lagekonstant sind. Schwierigkeiten ergeben sich dagegen im Bereich unterhalb 200 cm⁻¹. Hier überlagern sich verschiedene MC_5 - und $M'C_3$ -Deformationsschwingungen, so daß eine spezifizierte Zuordnung nur sehr schlecht möglich ist. Während es nicht mehr gelingt, die Chrom-, Molybdän- und Wolfram-Selen-Banden $vM-SeM'_2$ (A') und $\delta M-SeM'_2$ (A') zu lokalisieren, können nur noch die wiederum klar abgegrenzt auftretenden Banden für $\delta M'_2$ Se zugeordnet werden.

Zuordnung	13 IR	RE	14 IR	RE	15 IR	RE
δ _c CH ₂	1165 m	1168 (4)	1161 s	1169 (1)	1167 st	1170 (2)
δ.CH1	1150 s	1159 (3)	1152 s	1157 (1)	1150 s	1158 (2)
pasPbCH3	765 st		765 st		765 st	
osPbCH3	725 Sch		720 Sch		721 Sch	
δM(CO) ₅	662 st		663 s			
δM(CO)5	650 st		650 s			
δM(CO) ₅			603 st		596 st	
δM(CO) ₅	550 s		533 s		582 st	
δM(CO)5					547 s	
vasPbC3	479 st	486 (10)	479 st	484 (4)	478 st	488 (4)
v _s PbC ₃	453 st	461 (10)	457 m	464 (8)	455 m	468 (6)
vMC ₅	449 Sch	. ,			431 Sch	437 (7)
vMC ₅	414 s	410 (2)	391 s	407 (2)	410 s	421 (2)
vMC ₅		395 (5)	368 st		375 st	
vasPb2Se	200 st	207 (3)	198 st		228 st	232 (1)
v _s Pb ₂ Se		201 (2)		200 (6)	219 st	220 (5)
δPbC3	157 Sch	159 (6)	150 m	152 (2)	159 Sch	163 (4)
)	145 m	143 (3)		145 (2)	149 m	144 (2)
und	127 m	133 (3)	127 m	130 (4)		133 (4)
}				• • •	120 Sch	127 (4)
δMC ₅						102 (10)
ļ	103 m	98 (10)	96 m	101 (6)	98 m	92 (9)
δPb ₂ Se	51 m	52 (4)	59 s	53 (4)	52 s	53 (5)

Tab. 3c. IR-Absorptionen im Bereich 1300-50 cm^{-1 a)} und Raman-Emmissionen im Bereich $1300-30 \text{ cm}^{-1}\text{ b}$ der Komplexe 13-15 (st = stark, m = mittel, s = schwach, Sch = Schulter; Werte in Klammern = geschätzte Intensitäten)

a) Perkin-Elmer-Infrarot-Spektrophotometer 457 und Polytec Fourierspektrometer FIR 30 in Nujol zwischen CsBr bzw. Polyäthylenkiivetten (0.1 mm Schichtdicke). b) Raman-Spektrophotometer Cary 82, Krypton-Laser, Spectra-Physics, 647.1 nm, in Substanz.

¹H-NMR-Spektren

Die ¹H-NMR-Spektren der Liganden 1-3 und der Komplexe 7--15 (Tab. 4) in Benzol zeigen entsprechend dem Vorliegen von nur einer Protonensorte übereinstimmend ein Singulett-Hauptsignal. Bei allen Zinn- und Blei-Verbindungen ist dieses Hauptsignal von Satelliten-Signalen umgeben, die durch die Kopplung $J({}^{1}HC^{117/119}Sn)$ bzw. $J({}^{1}HC^{207}Pb)$ hervorgerufen werden. Daneben wurde erstmals eine über drei Bindungen hinweggehende Kopplung zwischen Protonen und dem in 7.58% natürlicher Häufigkeit vorkommenden Isotop 77Se bei metallorganischen Seleniden beobachtet. Dies war im Falle der Verbindungen 1 und 7-12 möglich. Die Zunahme der Kopplungskonstanten J(1HCGe77Se) innerhalb der vollständigen Reihe der Germyl-Selen-Verbindungen, beim Übergang vom freien Liganden 1 (3 Hz) zu den Komplexen 7 (3.8 Hz), 8 (3.9 Hz) und 9 (4.2 Hz) läßt auf eine Zunahme des s-Charakters der Ge-Se-Bindung schließen. Daraus geht hervor, daß das in den Komplexen 7-9 am Selen verbleibende freie Elektronenpaar kein reines s-Elektronenpaar darstellt. Da andererseits aber eine sp2-Hybridisierung des Selens aufgrund der Schwin-

	δ	J(1HC117Sn)	<i>J</i> (¹ HC ¹¹⁹ Sn)	<i>J</i> (1HC207Pb)	J(¹ HCM ^{'77} Se)	$rac{\Delta J}{J_{ m L}}$
1	+397.3				3.0	
2	+407.6	53.1	55.5			
3	+362.0			62.0		
7	+-403.0				3.8	0.267
8	+403.6				3.9	0.300
9	-+ 403.8				4.2	0.400
10	+409.3	52.8	55.4		2.3	
11	+408.6	52.8	55.1		2.3	
12	+409.2	52.8	55.0		2.4	
13	+363.1			59.4		
14	+363.5			60.0		
15	+363.3			59.5		

Tab. 4. Chemische Verschiebungen der ¹H-NMR-Signale der Liganden 1−3 sowie der Komplexe 7−15 (&-Werte in Hz) in konzentrierten Lösungen in Benzol, Benzol als interner Standard, und Kopplungskonstanten in Hz [Varian DB 60 (60 MHz)]

gungsspektren mit Sicherheit auszuschließen ist, muß demzufolge das Selen in diesen Komplexen sp³-hybridisiert sein. Wird die Größe $\frac{\Delta J}{J_L}^{16} = \frac{J_{\text{Komplex}} - J_{\text{Ligand}}}{J_{\text{Ligand}}}$ als Kriterium für die relative Änderung des s-Charakters der Se-Ge-Bindung herangezogen, so sieht man, daß diese Werte in etwa der gleichen Größenordnung liegen, wie die Werte beim Übergang vom freien Tris(trimethylgermyl)phosphin zu den entsprechenden Chrom-, Molybdän- und Wolfram-Komplexen¹⁵⁾. Die Kopplungskonstanten J(1HCSn⁷⁷Se) sollten erfahrungsgemäß kleiner sein als die soeben betrachteten Kopplungen über Germanium hinweg. In Übereinstimmung damit stehen die Werte für 10 (2.34 Hz), 11 (2.30 Hz) und 12 (2.35 Hz), während es bereits schon nicht mehr gelingt, diese Kopplung im Spektrum des freien Liganden 2 aufzufinden. Die demzufolge noch kleineren Kopplungskonstanten J(1HCPb⁷⁷Se) konnten weder für 3 noch für die zugehörigen Komplexe 13-15 aufgefunden werden.

Unser Dank gilt der Badischen Anilin- & Soda-Fabrik AG, Ludwigshafen, für kostenlose Überlassung von Hexacarbonylmolybdän, sowie der Deutschen Forschungsgemeinschaft, dem Senator für Wirtschaft des Landes Berlin und dem Fonds der Chemischen Industrie für finanzielle Unterstützung dieser Arbeit.

Experimenteller Teil

Bis(trimethylplumbyl)selenid (3): 11.5 g (40 mmol) Trimethylbleichlorid und 2.5 g (20 mmol) wasserfreies Natriumselenid werden in 150 ml absol. Benzol aufgeschlämmt und in Argonatmosphäre unter starkem Rühren 5 h unter Rückfluß erhitzt. Dann wird die gelbe Lösung über eine G3-Umkehrfritte vom gebildeten Natriumchlorid abgetrennt, das Lösungsmittel i. Vak. entfernt und das zurückbleibende gelbe Öl in Pentan aufgenommen. Nach nochmaliger Filtration kristallisieren bei -30° C aus der klaren Pentanlösung farblose Kristalle, die nach Absaugen durch eine gekühlte Umkehrfritte oberhalb 0°C zu einer farblosen Flüssigkeit

¹⁶⁾ H. Schumann, O. Stelzer, U. Niederreuther und L. Rösch, Chem. Ber. 103, 1383 (1970).

schmelzen. Eine Destillation der Verbindung ist nicht ratsam, da sich beim Siedepunkt von $52^{\circ}C/0.25$ Torr ein großer Teil zersetzt. Ausb. 7.6 g (65 %).

C₆H₁₈Pb₂Se (583.6) Ber. C 12.34 H 3.10 Gef. C 12.57 H 3.17 Mol.-Masse 612 (kryoskop. in Benzol)

Darstellung der Komplexe 7–15: Alle Reaktionen wurden unter sorgfältig von O_2 und H_2O befreitem Argon durchgeführt. Die Reaktionsbedingungen, Ausbeuten und Zersetzungspunkte der dargestellten Verbindungen sind aus Tab. 5, deren Analysenwerte aus Tab. 6 zu entnehmen. Zur Darstellung wurde eine Lösung der Übergangsmetallcarbonyle in 100 ml Tetrahydrofuran in einer Bestrahlungsapparatur unter magnetischem Rühren mit UV-Licht (Quarzlampe Q

Ligand g (mmol)	M(CO) ₆ Reakt g (mmol) Zeit (h)	Reaktionsprodukt	Ausb. g (%)	ZersP.
3.1 (10) 1	2.2 (10) Cr 12	$(CO)_5CrSe[Ge(CH_3)_3]_2$ 7	1.5 (30)	90°C
3.1 (10) 1	2.6 (10) Mo 12	$(CO)_5MoSe[Ge(CH_3)_3]_2$ 8	1.3 (24)	95°C
1.6 (5) 1	1.7 (5) W 24	$(CO)_5WSe[Ge(CH_3)_3]_2$ 9	1.1 (35)	108°C
2.0 (5) 2	1.1 (5) Cr 12	$(CO)_5 CrSe[Sn(CH_3)_3]_2$ 10	2.0 (67)	82°C
4.0 (10) 2	2.6 (10) Mo 12	(CO)5MoSe[Sn(CH3)3]2 11	2.0 (31)	95°C
4.0 (10) 2	3.5 (10) W 5	$(CO)_5WSe[Sn(CH_3)_3]_2$ 12	2.5 (34)	105°C
5.8 (10) 3	2.2 (10) Cr 28	$(CO)_5 CrSe[Pb(CH_3)_3]_2$ 13	2.4 (31)	95°C
5.8 (10) 3	2.6 (10) Mo 28	(CO)5MoSe[Pb(CH3)3]2 14	1.6 (19)	97°C
5.8 (10) 3	3.5 (10) W 28	$(CO)_5WSe[Pb(CH_3)_3]_2$ 15	2.4 (26)	105°C

Tab. 5. Darstellung der Komplexe 7-15

Tab. 6. Analysenwerte der Komplexe 7 -15

Kompley		Summenformel	Analysen
		(MolMasse)	СН
	Bis(trimethylgermyl)selenid-		
7	-pentacarbonylchrom(0)	C ₁₁ H ₁₈ CrGe ₂ O ₅ Se (506.4)	Ber. 26.08 3.58 Gef. 25.85 3.58
8	-pentacarbonylmolybdän(0)	$C_{11}H_{18}Ge_2MoO_5Se$ (550.4)	Ber. 24.00 3.29 Gef. 23.20 3.10
9	-pentacarbonylwolfram(0)	$C_{11}H_{18}Ge_2O_5SeW$ (638.3)	Ber. 20.69 2.84 Gef. 20.04 3.20
	Bis(trimethylstannyl)selenid-		
10	-pentacarbonylchrom(0)	$C_{11}H_{18}CrO_5SeSn_2$ (598.6)	Ber. 22.07 3.03 Gef. 22.20 3.10
11	-pentacarbonylmolybdän(0)	$C_{11}H_{18}MoO_5SeSn_2$ (642.6)	Ber. 20.56 2.82 Gef. 20.50 2.80
12	-pentacarbonylwolfram(0)	$C_{11}H_{18}O_5SeSn_2W$ (730.5)	Ber. 18.08 2.48 Gef. 18.03 2.11
	Bis(trimethylplumbyl)selenid-		
13	-pentacarbonylchrom(0)	C ₁₁ H ₁₈ CrO ₅ Pb ₂ Se (775.7)	Ber. 17.03 2.33 Gef. 17.07 2.29
14	-pentacarbonylmolybdän(0)	$C_{11}H_{18}MoO_5Pb_2Se$ (819.6)	Ber. 16.12 2.21 Gef. 16.50 2.59
15	-pentacarbonylwolfram(0)	$C_{11}H_{18}O_5Pb_2SeW$ (907.6)	Ber. 14.55 1.99 Gef. 14.49 1.99

150 Hanau) bei Raumtemp. bestrahlt. Der Ablauf der Umsetzungen wurde an Hand der abgespaltenen Mengen an Kohlenmonoxid, welches in einem mit Wasser gefüllten Gasometer mit vorgeschaltetem Trockenrohr (P₄O₁₀) aufgefangen wurde, verfolgt. Nach Abspaltung der berechneten Menge Kohlenmonoxid wurde die Lösung des Pentacarbonylmetall-THF-Komplexes (**4**-**6**) in einen mit schwarzem Papier ummantelten 250-ml-Dreihalskolben übergeführt und unter Rühren die angegebene Menge **1**, **2** bzw. **3**, gelöst in jeweils 50 ml Tetrahydrofuran, zugetropft und anschließend die angegebene Zeit bei 0°C gerührt. Daraufhin entfernte man das Lösungsmittel i. Vak. (-20 bis 0°C/10⁻³ Torr) und kristallisierte mehrmals aus Pentan um (Auflösen bei Raumtemp., Ausfällen bei -78°C). Alle Versuche, Molekulargewichtsbestimmungen (kryoskopisch in Benzol) durchzuführen, schlugen fehl. Die Komplexe beginnen bereits nach kurzer Zeit in verdünnter benzolischer Lösung zu zerfallen, so daß keine befriedigenden Werte erhalten werden konnten.

[24/73]